Least-Squares Approximate Solution of Overdetermined Sylvester Equations

نویسندگان

  • A. Scottedward Hodel
  • Pradeep Misra
چکیده

We address the problem of computing a low-rank estimate Y of the solution X of the Lyapunov equation AX + XA′ + Q = 0 without computing the matrix X itself. This problem has applications in both the reduced-order modeling and the control of large dimensional systems as well as in a hybrid algorithm for the rapid numerical solution of the Lyapunov equation via the alternating direction implicit method. While no known methods for low-rank approximate solution provide the two-norm optimal rank k estimate Xk of the exact solution X of the Lyapunov equation, our iterative algorithms provide an effective method for estimating the matrix Xk by minimizing the error ‖AY + Y A′ +Q‖F .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System Models

The formulation of steady-state initialization problems for fluid systems is a non-trivial task. If steady-state equations are specified at the component level, the corresponding system of initial equations at the system level might be overdetermined, if index reduction eliminates some states. On the other hand, steady-state equations are not sufficient to uniquely identify one equilibrium stat...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Gauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations

In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015